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A tutorial on the Aitken convergence accelerator 
 

By Cedrick Collomb1 
 

Abstract.  This tutorial introduces the concept and usefulness of convergence accelerators 
hopefully in a simple manner intelligible to any reader with minimal mathematical and 
engineering skills. The Aitken convergence accelerator is derived as an example with both 
intuitive explanations (every step is purposely made unnecessarily detailed for ease of 
understanding) and a simple demonstration. Source code is provided as a way to skip the 
potential formula obfuscation in order to help the reader implement and use the Aitken 
convergence accelerator immediately after reading this document.  

 
1. Introduction 

 
There exists in Mathematics and Computer Science a large number of iterative algorithms 
whose goal is usually to reach a solution to a problem within a certain tolerance within a 
given number of iterations. Iterating means going over a pattern of steps and procedures 
that can sometimes be complex and sometimes take a substantial amount of time even for 
fast modern computers. Examples of common iterative algorithms are root solvers, 
matrix inversion, linear equation solvers, and integrators. Each of these have deep 
implications in domains such as Engineering, in general; Computer Graphics; Video 
Games where runtime performance is critical; and also surprisingly in Internet search 
engines for features such as page rank [4]. What if there existed methods to reach the 
same result faster with less iteration? This is the purpose of convergence accelerators. 
 
The rest of the tutorial is organized as follow:  Section 2 introduces the Aitken formula 
graphically. Section 3 introduces the Aitken formulas analytically. Section 4 gives an 
example use of the Aitken formulas. Section 5 demonstrates that the Aitken formula 
accelerates convergence under given conditions. Section 6 introduces iterative Aitken 
formulas and Meyers iterated Aitken formulas. Section 7 extends Meyers formulas. 
Section 8 concludes this tutorial. 

 
2. A graphical explanation of the Aitken 2δ  accelerator2  formula 

 
Imagine you have a convergent sequence ( )n n

x
∈ℕ

 iteratively defined by ( )1n nx f x+ = , 

and that this sequence converges to x  with ( )f x x= . 

 
Given an initial start point 0x , you can construct the sequence ( )n n

x
∈ℕ

 graphically. Figure 

1 shows how to proceed. Place 0x  on the x  axis, find the point of the curve ( )y f x=  

                                                 
1 ccollomb@yahoo.com / http://ccollomb.free.fr/ 

2 The Aitken accelerator being called 2δ  process is due to the fact that in (3), the numerator is a difference 

squared i.e. ( )2∆  and the denominator is a difference of a difference i.e. 2∆  as in ( )∆ ∆ . 
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that is vertically aligned with 0x , the y  value of this point is ( )0f x . Since by definition 

( )1 0x f x=  we now have found the value of 1x . In order to place 1x  graphically on the x  

axis, find the point of the curve y x=  that is horizontally aligned with ( )0f x  and project 

this point vertically on the x  axis. Repeating the same procedure will give you 2x , then 

3x , and you can continue to get as many terms of the sequence ( )n n
x

∈ℕ
 as needed. 

 
 

Figure 1 

y x=

( )y f x=

0x 1x

( )0f x

( )1f x

2x

( ) ( ) ( ) ( )1 0
0 0

1 0

f x f x
y f x x x

x x

−
= + −

−

x

0P

1P

 
 

Now let’s focus on the first two points ( )
0

00
x
f xP  and ( )

1

11
x
f xP , and the line going through 

those two points as shown in Figure 1. 

The equation of this line is ( ) ( ) ( ) ( )1 0
0 0

1 0

f x f x
y f x x x

x x

−
= + −

−
. Replacing ( )0f x  by 1x  

and ( )1f x  by 2x  gives  

 ( ) 2 1
1 0

1 0

x x
y x x x

x x

−= + −
−

 (1) 

 
The idea behind Aitken is to approximate x  by the intersection of the line going through 

0P  and 1P , with the line y x= . Finding the intersection is relatively simple and just 

require solving ( ) 2 1
1 0

1 0

x x
x x x x

x x

−= + −
−

, where the only unknown is x . 
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Regrouping the terms in x  on the left side of the equal sign gives 

2 1 2 1
1 0

1 0 1 0

1
x x x x

x x x
x x x x

 − −− = − − − 
 and after multiplying both sides of the equation by  1 0x x−  

we find ( ) ( )( ) ( ) ( )1 0 2 1 1 1 0 0 2 1x x x x x x x x x x x− − − = − − −  therefore we have 

 

 
( ) ( )
( ) ( )( )

1 1 0 0 2 1

1 0 2 1

x x x x x x
x

x x x x

− − −
=

− − −
 (2) 

 
Subtracting and adding ( )0 1 0x x x−  in the middle of the numerator of (2) gives 

( ) ( ) ( ) ( )
( ) ( )( )

1 1 0 0 1 0 0 1 0 0 2 1

1 0 2 1

x x x x x x x x x x x x
x

x x x x

− − − + − − −
=

− − −
 which first two terms of the 

numerator can be factored by ( )1 0x x−  and which last two terms of the numerator can be 

factored by 0x  which gives 
( ) ( ) ( )( )

( ) ( )( )
2

1 0 0 1 0 2 1

1 0 2 1

x x x x x x x
x

x x x x

− + − − −
=

− − −
. 

Simplifying by ( ) ( )( )1 0 2 1x x x x− − −  gives 
( )

( ) ( )( )
2

1 0
0

1 0 2 1

x x
x x

x x x x

−
= +

− − −
. Therefore 

 

 
( )

( ) ( )( )
2

1 0
0

1 0 2 1

x x
x x

x x x x

−
= +

− − −
 (3) 

 
This is the Aitken formula to find an approximate x  of x  given three consecutive terms 
of a sequence.  

 
3. An analytical explanation of the Aitken formulas 

 
As for the previous section you have a convergent sequence ( )n n

x
∈ℕ

 iteratively defined 

by ( )1n nx f x+ = , and that this sequence converges to x  with ( )f x x= . Now let’s admit 

that ( )f x  has a Taylor development at x  of order 2. 

 

 ( ) ( ) ( ) ( )2f x h f x hf x O h′+ = + +  (4) 

 
We definex x h= + , therefore h x x= − . Let ( )f xα ′= . Replacing x  by x h+ , h  by 

x x− , ( )f x  by x , and ( )f x′  by α  in (4), as well as neglecting the order two error 

( )( )2
O x x−  gives 

 ( ) ( )f x x x xα= + −  (5) 
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Note that we do not know x  and also generally do not know α  in (5). Applying the 
previous formula to two continuous elements of the sequence ix  and 1ix + , gives two 

equations with two unknowns x  and α . 
 

( ) ( )1i i ix f x x x xα+ = = + −  

 ( )1 1i ix x xα α+ = − +  (6) 

 

( ) ( )2 1 1i i ix f x x x xα+ + += = + −  

 ( )2 11i ix x xα α+ += − +  (7) 

  
Subtracting (6) from (7) gives ( )2 1 1i i i ix x x xα+ + +− = − . Therefore gives us α . 

 

 2 1

1

i i

i i

x x

x x
α + +

+

−=
−

 (8) 

 

We use (8) to calculate 
1

1 α−
 and 

1

α
α−

 that will come handy very soon. 

( ) ( )1 2 12 1

1 1

1 1 i i i ii i

i i i i

x x x xx x

x x x x
α + + ++ +

+ +

− − −−− = − =
− −

 

 and ( ) ( )
1

1 2 1

1

1
i i

i i i i

x x

x x x xα
+

+ + +

−=
− − − −

 (9) 

 Combining (8) and (9) gives ( ) ( )
2 1

1 2 11
i i

i i i i

x x

x x x x

α
α

+ +

+ + +

−=
− − − −

 (10) 

 
We use (6) and (9) to find a first formula for x . 

 

 Using (6) and solving for x  gives 1

1
i ix x

x
α
α

+ −=
−

 (11) 

 

Subtracting and adding ix  gives 1

1
i i i ix x x x

x
α

α
+ − + −=

−
 

Factoring the right side of the numerator gives 1 (1 )

1
i i ix x x

x
α

α
+ − + −=

−
 

Simplifying gives 1

1
i i

i

x x
x x

α
+ −= +
−

 

Therefore 1

1
i i

i

x x
x x

α
+ −= +
−

 and using (9) gives 

 
( )

( ) ( )

2

1

1 2 1

i i
i

i i i i

x x
x x

x x x x
+

+ + +

−
= +

− − −
 (12) 
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Using (11) in a different way leads to the second expression for x . 
 

Subtracting and adding 1ixα +  in (11) gives 1 1 1

1
i i i ix x x x

x
α α α

α
+ + +− + −=

−
 

Factoring the numerator gives 
( ) ( )1 11

1
i i ix x x

x
α α

α
+ +− + −

=
−

 

Simplifying gives 
( )1

1 1
i i

i

x x
x x

α
α

+
+

−
= +

−
, and using (10) gives 

 
( )( )

( ) ( )
2 1 1

1
1 2 1

i i i i
i

i i i i

x x x x
x x

x x x x
+ + +

+
+ + +

− −
= +

− − −
 (13) 

 
The third expression for x  comes from (7). 
 

Using (7) and solving for x  gives 2 1

1
i ix x

x
α
α

+ +−=
−

 

Subtracting and adding 2ixα +  gives 2 2 2 1

1
i i i ix x x x

x
α α α

α
+ + + +− + −=

−
 

Factoring the numerator gives 
( ) ( )2 2 11

1
i i ix x x

x
α α

α
+ + +− + −

=
−

 

Simplifying gives 
( )2 1

2 1
i i

i

x x
x x

α
α

+ +
+

−
= +

−
 

 
Using (10) gives the most common formulation of the Aitken accelerator.  

 

 
( )

( ) ( )

2

2 1
2

1 2 1

i i
i

i i i i

x x
x x

x x x x
+ +

+
+ + +

−
= +

− − −
 (14) 

 
 
To resume there are three equivalent ways to express x , equations (13) and (14) could 
have been directly expressed from (12) but it was worth deriving from the original 
equations for pedagogic reasons. The high level item that is very important to understand 
is that the Aitken accelerator gives an approximate of the solution of your problem (x ) 
based on three consecutive terms of a convergent sequence. 

 

(12) 
( )

( ) ( )

2

1

1 2 1

i i
i

i i i i

x x
x x

x x x x
+

+ + +

−
= +

− − −
 

(13) 
( )( )

( ) ( )
2 1 1

1
1 2 1

i i i i
i

i i i i

x x x x
x x

x x x x
+ + +

+
+ + +

− −
= +

− − −
 

(14) 
( )

( ) ( )

2

2 1
2

1 2 1

i i
i

i i i i

x x
x x

x x x x
+ +

+
+ + +

−
= +

− − −
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4. Example of use of the Aitken accelerator 
 
The Newton method is a well known method to find roots of the equation ( ) 0g x = . The 

iterative procedure is given by ( ) ( )
( )

g x
f x x

g x
= −

′
. An extension of the Newton method 

described in [8] is the Steffensen method that uses for every three iterations two iterations 
of  the Newton methodf and the Aitken formula (14) on the last three elements of the 
sequence for the last iteration. 

 
5. A simple demonstration 

 
Definition: ( )n n

T
∈ℕ

 is an accelerating sequence3 of ( )n n
S

∈ℕ
 if the following properties are 

true: ( )n n
T

∈ℕ
 converges to the same limit S  as ( )n n

S
∈ℕ

, ( )n n
T

∈ℕ
 converges faster than 

( )n n
S

∈ℕ
 with the following criterion lim 0n

n
n

T S

S S→∞

− =
−

. 

 

Theorem: Let ( )n n
S

∈ℕ
 be a converging sequence to S , verifying 1lim n

n
n

S S

S S
λ+

→∞

− =
−

 with 

1;1λ ∈ −� � . The sequence ( )n n
T

∈ℕ
 defined by 

( )
( ) ( )

2

1

1 2 1

n n
n n

n n n n

S S
T S

S S S S
+

+ + +

−
= +

− − −
, is an 

accelerating sequence of ( )n n
S

∈ℕ
. 

 
Demonstration: 
 

a. Let’s demonstrate that lim n
n

T S
→∞

=  

 
Adding S S− +  in all parenthesis and dividing numerator and denominator by 1nS S+ −  

gives 
( )1

1

2

1 1

1

1 1

n
n n

n
n n

n n

n n

S S
S S

S S
T S

S S S S

S S S S

+
+

+

+ +

 −+ − − = +
   − −+ − −   − −   

 simplifying and taking the limit when 

n → ∞  gives 
1

1
1

lim lim ( )
1

1 1
n n n

n n
T S S S

λ

λ
λ

+→∞ →∞

 − 
 = + −

− − +
 since 1λ ≠ , the denominator is not 

zero therefore ( )n n
T

∈ℕ
 converges and lim n

n
T S

→∞
= . 

 

                                                 
3 Using the same notations and definitions as in [2]. 
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b. Let’s demonstrate that ( )n n
T

∈ℕ
 converges faster than ( )n n

S
∈ℕ

. 

( )
( ) ( )

( )
( ) ( )

2 2

1 1

1 2 1 1 2 11

n n n n
n

n n n n n n n nn

n n n

S S S S
S S

S S S S S S S ST S

S S S S S S

+ +

+ + + + + +

− −
− +

− − − − − −− = = +
− − −

 

 
Adding S S− +  in all parenthesis and dividing numerator and denominator by 1nS S+ −  

gives 

1

1

2

1 1

1 1

1

1 1

n n

n nn

n n n

n n

S S S S

S S S ST S

S S S S S S

S S S S

+

+

+

+ +

  − −+ − +  − −−   = +
−    − −+ − − +   − −   

 therefore 

 

( ) ( )2

2

1
1 1

1
lim 1 1 0

1 2 12

n

n
n

T S

S S

λ λλ
λ λλ

λ
→∞

 − − +  −−  = + = − =
− − +− −

 

Therefore ( )n n
T

∈ℕ
 converges faster than ( )n n

S
∈ℕ

. 

 
 

6. Iterative Aitken Accelerator 
 
One might wonder why should we stop there? The Aitken accelerator gives an estimate 
of the limit of a convergent sequence given three consecutive terms, what if we created a 
sequence of the Aitken estimations and applied the Aitken formula on that sequence? 
What if we created a convergent sequence that used the Aitken accelerator to converge 
faster to the limit? Those are great ideas and it is indeed possible to use the Aitken 
iterator iteratively to accelerate the convergence further.  
 

a. Simple iterative method. 

Let’s define the sequence ( )i
n n

x
∈ℕ

 by 
( )

( ) ( )
21 1

2 11
2 1 1 1 1

1 2 1

i i
n ni i

n n i i i i
n n n n

x x
x x

x x x x

− −
+ +−

+ − − − −
+ + +

−
= +

− − −
 which is the 

result of creating ( )i
n n

x
∈ℕ

 by applying equation (14) to three consecutive terms of 

( )1i
n n

x −

∈ℕ
. Following the assumption that ( )1i

n n
x −

∈ℕ
 converges, it is reasonable to believe 

that ( )i
n n

x
∈ℕ

 will also converge and will converge faster. This is reasonable but although 

it works in some instances it is very important to realize it is not always true. 
 
So this is a very simple way to iteratively apply the Aitken accelerator. The advantage of 
this method is that you can get closer to the limit with few more arithmetic operations. 
The other advantage is that you can apply this process without the need of using f  nor  a 
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sequence ( )n n
x

∈ℕ
 iteratively defined by ( )1n nx f x+ = . The disadvantage is that you need 

to store a certain number of values of ( )1i
n n

x −

∈ℕ
 that will be used to define the sequence 

( )i
n n

x
∈ℕ

. 

 
Table 1 shows the result of the iterative Aitken accelerator based on 5 steps of the 

sequences defined by ( ) 9

10

xx e
f x

−=  which limit is ( )1LambertW− 4 . Reaching the 

same accuracy without the iterated Aitken accelerator would require calculating 33x . 

 
Table 1 

n ( )n n
x

∈ℕ
 ( )1

n n
x

∈ℕ
 ( )2

n n
x

∈ℕ
 

0  0.00000 -0.51239 -0.56476 
1 -0.10000 -0.53054  
2 -0.18048 -0.54239  
3 -0.24592   
4 -0.29953   

Error  0.26762 0.02475 0.00238 
 
 
Table 2 shows the result of the iterative Aitken accelerator based on 5 values of the serie 

defined by 
( )

0

1

(1 2 )

jn

n
j

x
j=

−
=

+∑ that converges to 
4

π
. Reaching the same accuracy without the 

iterated Aitken accelerator would require calculating 1951x . 

 
Table 2 

n ( )n n
x

∈ℕ
 ( )1

n n
x

∈ℕ
 ( )2

n n
x

∈ℕ
 

0 1.00000 0.79166 0.78552 
1 0.66666 0.78333  
2 0.86666 0.78630  
3 0.72380   
4 0.83492   

Error 0.04952 0.00091 0.00001 
 

 
 
b. Meyers’ iterative method 

 
First let us rewrite (13) by replacing 2ix +  by ( )1if x + , and by replacing 1ix +  by ( )if x . It 

shows the Aitken formula in another form. 

                                                 
4 See [9] for more details on the Lambert W function. 
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( )( )

( )( ) ( )( ) ( )( )1 1 1
1 1

i i
i i i

i i i i

f x x
x x f x x

f x x f x x+ + +
+ +

−
= + −

− − −
 (15) 

 
Let us now construct a sequence ( )n n

y
∈ℕ

. 

0y  is the iteration guess start value, chosen sometimes randomly or with a rough 

estimation depending the problem you are trying to solve. 

1y  is the first iteration and defined for the original sequence by ( )1 0y f y= . Let’s define 

0 1a =  then ( ) ( ) ( )( )1 0 0 0 0 0 0 0 0y f y y f y y y a f y y= = + − = + − . 

Let’s apply (15) to 0y  and 1y  to determine 2y . 

( )( )
( )( ) ( )( ) ( )( )0 0

2 1 1 1
0 0 1 1

f y y
y y f y y

f y y f y y

−
= + −

− − −
 

If we define 
( )( )

( )( ) ( )( )
0 0

1
0 0 1 1

f y y
a

f y y f y y

−
=

− − −
and use the fact that 0 1a =  then 

( )( )2 1 1 0 1 1y y a a f y y= + −  

 ( )( )2 1 1 0 1 1y y a a f y y− = −   (16)  

We want to determine 3y by using (13) to 1y , 2y and another value 2y ′ . An interesting 

value for 2y ′  is given by 

( )( )2 2 1 0 2 2y y a a f y y′ = + −  

 ( )( )2 2 1 0 2 2y y a a f y y′ − = −  (17) 

 
The idea is to interpolate or extrapolate in the direction ( )f y y−  by the same distance 

1 0a a  used for 2y . 

Using (13) to 1y , 2y  and 2y ′  gives 
( )( )

( ) ( )
2 2 2 1

3 2

2 1 2 2

y y y y
y y

y y y y

′ − −
= +

′− − −
 

Using (16) and (17) gives 
( )( ) ( )( )

( )( ) ( )( )
1 0 2 2 1 0 1 1

3 2
1 0 1 1 1 0 2 2

( ) ( )

( ) ( )

a a f y y a a f y y
y y

a a f y y a a f y y

− −
= +

− − −
 

 
Simplifying numerator and denominator by 1 0a a  gives 

( )
( ) ( ) ( )1 1

3 2 1 0 2 2
1 1 2 2

( )
( )

( ) ( )

f y y
y y a a f y y

f y y f y y

−
= + −

− − −
 

If we define 
( )

( ) ( )
1 1

2
1 1 2 2

( )

( ) ( )

f y y
a

f y y f y y

−
=

− − −
then ( )3 2 2 1 0 2 2( )y y a a a f y y= + −  
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Repeating the exact same steps to create ( )( )
1

0

i

i i i i i
i

y y a f y y
−

=

 ′ = + − 
 
∏  and applying (13) 

to 1iy − , iy  and iy ′  gives the Meyers iterative Aitken formulas. 

 

 ( )1
0

( )
i

i i i i i
i

y y a f y y+
=

 = + − 
 
∏  (18) 

With 
( )( )

( )( ) ( )( )
1 1

1 1

i i
i

i i i i

f y y
a

f y y f y y
− −

− −

−
=

− − −
for 1 i≤  and 0 1a = . 

 
 
 
 

 

It is very important to realize here that it has not been demonstrated that ( )n n
y

∈ℕ
 

is convergent, nor that it respects the necessary conditions to be accelerated by 
the Aitken formula. Although in practice the Meyers formula works really well 
in many cases and its convergence is in many case very impressive, it might be 
necessary to verify that it applies to the problem at hand. Nevertheless the 
advantage of this method is that it does not require storing all previous values of 
the sequence and it does not require more use of the function f . 

 
 

 
Table 3 compares the results of the normal sequence, the iterative Aitken sequence and 
the Meyers method, based on 5 values of the sequence defined by ( ) ( )cosf x x= that 

converges to approximately 0.73908513. Reaching the same accuracy without Meyers 
method, requires computing 43x  with basic iterations and 61x  with the iterative Aitken. 

 
Table 3 

N ( )n n
x

∈ℕ
 ( )2

n n
x

∈ℕ
 ( )n n

y
∈ℕ

 

0 0.36235775 0.73727953 0.36235775 
1 0.93506365  0.70250260 
2 0.59376721  0.74284646 
3 0.82883886  0.73905422 
4 0.67573215  0.73908511 

Error 0.06335298 0.00180561 0.25620330 710−×  
 

  
c. Other iterative ideas that do not work as well 

 
There are several creative ways you can try to iterate with the Aitken accelerator. 
Following are some examples of ideas that do not work really well in practice. 
 
Reusing the method presented in 6.a by using (15) instead of (14). It accelerates the 
convergence however in most case the method presented in 6.a converges faster. 



 11 

Moreover this method requires calling the function g during the iterations, and it will 
require n iterations to reach the final value. 
 
Another method is based on using (15) on two preceding values of the sequence. This 
method works well in practice and has the same advantages as the Meyers method, no 
storage is required and no additional calls to f  are required. However in most cases the 
Meyers method converges much faster. 
 
A last method that might sound reasonable at first but is flawed is to use (14) on three 
preceding values of the sequence. Although this sounds good at first, it does not use the 
function g and therefore is not likely to converge on the right value. Imagine that two 
sequences have the same initial three values, with this method they would end-up having 
the same calculated wrong limit. 
 

7. Using Meyers method to solve ( ) 0g x =  

 
Creating a function f  that has for fixed point ( )x f x=  the root of g  is relatively easy 

if we define f by the following ( ) ( ) ( )f x x w x g x= + , ( )w x  needs to be picked so that 

the sequence converges around x . 
 
The Meyers formulas (18) applied to f  following this definition give: 
 

 ( ) ( )( )1
0

i

i i i i i
i

y y a w y g y+
=

 = +  
 
∏  (19) 

With 
( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 1

1 1

i i
i

i i i i

w y g y
a

w y g y w y g y
− −

− −

=
−

 for 1 i≤  and 0 1a = . 

 
Most of the time ( ) 1w x =  will be good enough to solve g . 

 
8. Conclusion 

 
A well known result in the domain of data compression is that there is no single 
compression algorithm that can compress all data. In other words for a given compression 
algorithm there exist some data that can not be compressed by the algorithm. Delahaye 
and Germain-Bonne [5] have shown a very similar result in the domain of convergence 
acceleration by proving that several families of sequences have no algorithm accelerating 
the convergence of every sequence of the family. 

 
Therefore, as with the multitude of compression methods there are also several other 
convergence accelerations methods such as Euler’s transformation, Wynn’s ε  algorithm, 
Brezinski’s θ  algorithm, Levin’s transforms, and extrapolation methods. 
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The positive side of this incomplete solution is that there is always an interest to discover 
new acceleration formulas for sequences, and the reader of this tutorial can take part in 
this research effort. 
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10. Appendix. Non optimized C++ code. 
 
// Returns an estimate of the limit given three consecutive terms of a sequence 
float AitkenExtrapolation( const float x0, const float x1, const float x2 ) 
{ 
 float d1 = x1 - x0; 
 float d2 = x2 - x1; 
 return x0 + d1 * d1 / ( d1 - d2 ); 
} 
 
// Produce another sequence of n-2 terms using the Aitken extrapolation 
void IteratedAitken( float* const dst, const float* const src, const long n ) 
{ 
 for ( long i = 0; i < n - 2; i++ ) 
 { 
  dst[ i ] = AitkenExtrapolation( src[ i ], src[ i + 1 ], src[ i + 2 ] ); 
 } 
} 
 
// Typedef used for Meyers functions 
typedef float (*pSimpleFunction)( float x ); 
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// Fixed point iteration using Meyers method. To accelerate Newton method use f=x-u(x)/u'(x) 
float MeyersFixedPoint( pSimpleFunction f, const float startPoint, const long maxIteration, const 
float epsilon ) 
{ 
 long iter = maxIteration; 
 float res = f( startPoint ); // First iteration 
 float last = res - startPoint; 
 float prod = 1.0f; 
 float step = FLT_MAX; 
 
 while ( ( 1 < iter ) && ( epsilon <= fabsf( step ) ) ) // One iteration has already been done 
 { 
  float delta = f( res ) - res; 
  float diff = last - delta; 
  prod *= last / diff; 
  step = prod * delta; 
  res += step; 
  last = delta; 
  iter--; 
 } 
 
 return res; 
} 
 
// Root finding using Meyers method. To accelerate Newton method use g=u(x)/u'(x) 
float MeyersRoot( pSimpleFunction g, const float startPoint, const long maxIteration, const float 
epsilon ) 
{ 
 long iter = maxIteration; 
 float last = g( startPoint ); 
 float res = startPoint + last; // First iteration 
 float prod = 1.0f; 
 float step = FLT_MAX; 
 
 while ( ( 1 < iter ) && ( epsilon <= fabsf( step ) ) ) // One iteration has already been done 
 { 
  float delta = g( res ); 
  float diff = last - delta; 
  prod *= last / diff; 
  step = prod * delta; 
  res += step; 
  last = delta; 
  iter--; 
 } 
 
 return res; 
} 


