A tutorial on the Aitken conver gence acceler ator

By Cedrick Collomb*

Abstract. This tutorial introduces the concept and usefulrefssonvergence accelerators
hopefully in a simple manner intelligible to anyader with minimal mathematical and
engineering skills. The Aitken convergence accédergs derived as an example with both
intuitive explanations (every step is purposely mathnecessarily detailed for ease of
understanding) and a simple demonstration. Souode ¢s provided as a way to skip the
potential formula obfuscation in order to help tteader implement and use the Aitken
convergence accelerator immediately after readirmgdocument.

1. Introduction

There exists in Mathematics and Computer Scierlasga number of iterative algorithms
whose goal is usually to reach a solution to a lprabwithin a certain tolerance within a
given number of iterations. Iterating means goingra pattern of steps and procedures
that can sometimes be complex and sometimes talibstantial amount of time even for
fast modern computers. Examples of common iterasilgorithms are root solvers,
matrix inversion, linear equation solvers, and gnétors. Each of these have deep
implications in domains such as Engineering, inegalh Computer Graphics; Video
Games where runtime performance is critical; arsb @urprisingly in Internet search
engines for features such as page rank [4]. Whtteife existed methods to reach the
same result faster with less iteration? This ispilngpose of convergence accelerators.

The rest of the tutorial is organized as followec&on 2 introduces the Aitken formula
graphically. Section 3 introduces the Aitken foramilanalytically. Section 4 gives an
example use of the Aitken formulas. Section 5 destrates that the Aitken formula
accelerates convergence under given conditiongioBe6 introduces iterative Aitken
formulas and Meyers iterated Aitken formulas. SmcTtir extends Meyers formulas.
Section 8 concludes this tutorial.

2. A graphical explanation of the Aitken &% accelerator? formula

Imagine you have a convergent sequefig  iteratively defined byx ., = f(x,),
and that this sequence convergeXtaith f (X)=X.

Given an initial start poink,, you can construct the sequer(eo,a)nDN graphically. Figure
1 shows how to proceed. Plaggon thex axis, find the point of the curve= f (x)
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% The Aittken accelerator being calleail2 process is due to the fact that in (3), the nuioeiia a difference

squared i.e(A)° and the denominator is a difference of a diffeesie. A” as inA(A).



that is vertically aligned withx,, the y value of this point isf (xo) Since by definition
x = f (xo) we now have found the value &f. In order to placex; graphically on thex
axis, find the point of the curvg = x that is horizontally aligned with (xo) and project
this point vertically on thex axis. Repeating the same procedure will give ypouthen
X;, and you can continue to get as many terms o&‘,ezhelence(xn)nDN as needed.
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Now let’s focus on the first two poinﬂ%‘?(x()) andPR, ?(Xl) , and the line going through

those two points as shown in Figure 1.

) f (%)= (%)

The equation of this line iy = f (x,)+(x—x, . Replacingf (x,) by x,

and f (x) by x, gives

Sy (xey ) 2% 1
y =% +(x X°)>q—x0 (1)

The idea behind Aitken is to approximateby the intersection of the line going through
P, and B, with the liney=x. Finding the intersection is relatively simple ajudt

require solvingx = x, +(x - xo)u , Where the only unknown is.



Regrouping the terms inx on the left side of the equal sign gives

x{l—uj = x, - %221 and after multiplying both sides of the equatign & - x,
XX X, ™ X,

we find x((x =%,) = (%, = X)) = %,(X,= X)) =X (X ,~x ) therefore we have

X=

Xl(x1_xo)_X0(X2_X1) (2)

((Xl_XO)_(XZ_Xl))

Subtracting and adding<0(x1—x0) in the middle of the numerator of (2) gives
% (% = %o) = Xo(X,= %) + X o X=X ) =X { X 7~ X )
(%= %) = (%= %))
numerator can be factored gy, —X,) and which last two terms of the numerator can be

(Xi_xo)z+X0((X1_X0)_(X2_XJ))
((Xl_XO)_(XZ_Xl))
(% =%)"
Xl_xo)_(xz_xl)

X= which first two terms of the

factored byx, which givesx =

Simplifying by ((x1 ~%y) =(%,~ xl)) gives x = (( ) +x,. Therefore

(% = %)’
X =%~ (% —x) ©

A

This is the Aitken formula to find an approximateof X given three consecutive terms
of a sequence.

3. An analytical explanation of the Aitken formulas

As for the previous section you have a convergeqtjsnce(xq)nDN iteratively defined
by x.., = f (X,), and that this sequence convergeX twith f (X)=X. Now let's admit

that f (x) has a Taylor development &t of order 2.
f(X+h)=f(X)+ht'(x)+0(h?) (4)

We definex=X+h, thereforen=x-x. Let a = f'(X). Replacingx by X+h, h by
x-x, f(X) by X, and f'(X) by a in (4), as well as neglecting the order two error
O((x—?)z) gives

f (x)=X+a(x-X) (5)



Note that we do not know and also generally do not knaw in (5). Applying the
previous formula to two continuous elements of sieguencex and x,,, gives two

equations with two unknowns anda .

X1

—

f(x)=X+a(x-x)
= (1-a)x+ax (6)

X = f ()§+1) =7+O’(Xi+l—Y)
X, =(1-a)X+ax,, (7)

Subtracting (6) from (7) giveg,, —x,, = a(>§+l— X ) . Therefore gives ug .

a= X2 =X (8)
X ™%
We use (8) to calculat<l-)1—a andn that will come handy very soon.
1-g=1- Ko = X1 - (Xi+l —X ) _()§+2 - )§+1)
X ™% X ™%
1 X~ X
and = L 9)
=g (% =%) = (%27 %)
Combining (8) and (9) givesZ— = X2~ Xt (10)
I-a (%ua=%)= (X2 %0)

We use (6) and (9) to find a first formula far.

Using (6) and solving fok gives X = >§+11_‘;7>§ (11)

XX -ax

1-a

Xa~ X +)§(1—O')
1-a

Subtracting and adding givesX = att

Factoring the right side of the numerator gives

X

Simplifying givesX = >§+1 e +X

X =%
2
X ™% ) _()9+2 - )§+1)

ThereforeX = x + and using (9) gives

x|

:)g+(



Using (11) in a different way leads to the secoxpression forx .

Subtracting and addingx,, in (11) givesx = X Z 0K T Xy = OX

l1-a
1- -+ =X
Factoring the numerator give‘s:( a))gﬂl a()ﬁﬂ )ﬁ)
-a
Simplifying givesX =X, +a(i_—i” , and using (10) gives

()§+2 B )§+1)()§+1_ )ﬂ)
X ™K ) _()ﬁ+2 - )§+1)

X = )§+l+ ( (13)

The third expression fox comes from (7).

Using (7) and solving fox gives X :)§+21_—m9'+1
-a

Subtracting and addingx, gives X =22 _mﬂﬂltc:gﬂ_mﬁﬂ
(1_a))§+2 +a()§+2_)§+1)
1-a
a()§+2 _)§+1)
l-a

Factoring the numerator givés=

Simplifying givesX = X, +
Using (10) gives the most common formulation of Aidxen accelerator.

(%2 = %)’
)§+1 _)g)_()ﬂ+2 _)§+1)

X = )§+2+ ( (14)

To resume there are three equivalent ways to expre®quations (13) and (14) could
have been directly expressed from (12) but it wasthvderiving from the original
equations for pedagogic reasons. The high level tteat is very important to understand
is that the Aitken accelerator gives an approxintdtéhe solution of your problemx()
based on three consecutive terms of a converggoegsee.

_ ()g+1_)§)2
12) X=X
(12) x >§+()§+1_)§)_(>§+2—>§+1)
()§+2_)§+1)()§+1_)§)
)§+1_)§)_()§+2_)§+1)
__ (X2 =%)’
14) X =x
(14) x )ﬂ+z+()§+1_)§)_()§+2—)§+1)

(13X =x., ¢




4. Example of use of the Aitken accelerator

The Newton method is a well known method to findtsoof the equatiorg(x) =0. The

g(x)
g'(x)
described in [8] is the Steffensen method that fmesvery three iterations two iterations
of the Newton methofl and the Aitken formula (14) on the last three eletmef the

sequence for the last iteration.

iterative procedure is given by(x) =X- . An extension of the Newton method

5. A simpledemonstration

Definition: (T,) . is an accelerating sequeneé (S,) . if the following properties are
true: (T,) . converges to the same linft as(S,) .. (T,) ., converges faster than

(S,) .o With the following criterionlim ;” “S_p.

Theorem: Let(Sn)nDN be a converging sequence $q verifying Iimﬁ=/] with

A0]-31 . The sequenc€T,) . defined byT, :Sn+(5n+1 ‘(;n;l‘_(z:l‘sm) , is an

accelerating sequence (§,) . .

Demonstration:

a. Let's demonstrate thdimT =S

n- oo

Adding -S+S in all parenthesis and dividing numerator and denator byS,, —-S

2 &% Jisums)

gives T =S + Sa~ S simplifying and taking the Ilimit when
S-S, S.,-S
1+ - T2 P g
S —S Si—S
)
n - o giveslimT, = S+lim ———4—(S,,,-S,) sinced#1, the denominator is not
e nwl—;—)l +1

zero thereforgT,) . converges andimT, =S.

n- oo

% Using the same notations and definitions as in [2]



b. Let's demonstrate th4fl,) _ converges faster th(i§,) . -

nON

(S|1+1_Sn)2 (Sn+1_sn)2
-S
Tn -S - S” +(Sn+l_Sn)_(Sn+2_Sn+1) =1+ (Sn+l_Sn)_(Sn+2_Sn+1)
Sn—S Sn_S Sn_S

Adding —-S+S in all parenthesis and dividing numerator and denator by S

(“ S-s, j{_ﬂ snﬂ—SJ
T,=S_;, L Su=S S-S

S-S (“ S-S, H_“ a+2—8j
Sn+1_S Sn+1_S

+l_S

gives therefore

1
T-s_ (H)(‘“”)_ (A-2° _
lim =1+ =1-—_—7 =
oS —S oyt A2=2A+1

A
Therefore(T,) . converges faster the(i§,) . .

6. lterative Aitken Accelerator

One might wonder why should we stop there? Theehitkccelerator gives an estimate
of the limit of a convergent sequence given threesecutive terms, what if we created a
sequence of the Aitken estimations and appliedAtdtieen formula on that sequence?
What if we created a convergent sequence that teeditken accelerator to converge
faster to the limit? Those are great ideas and inhdeed possible to use the Aitken
iterator iteratively to accelerate the convergencther.

a. Simple iterative method.

(=)
(%3 %) = (%2 - %)
result of creating(qu)nDN by applying equation (14) to three consecutivengerof

which is the

Let's define the sequenc(equ)nDN by x =X+

i-1 . . i-1 .- .
(xn )nDN. Following the assumption th(ilg )nDN converges, it is reasonable to believe

that ()(L)nDN will also converge and will converge faster. Tisigeasonable but although
it works in some instances it is very importantdalize it is not always true.
So this is a very simple way to iteratively apphg tAitken accelerator. The advantage of

this method is that you can get closer to the lwith few more arithmetic operations.
The other advantage is that you can apply thisgg®evithout the need of using nor a



sequencex,) . iteratively defined byx,, = f (x,). The disadvantage is that you need

to store a certain number of values(txffl)nDN that will be used to define the sequence

(%) -

Table 1 shows the result of the iterative Aitkertederator based on 5 steps of the
Ox-¢"

sequences defined bf(x) = which limit is —Lambertw (1) *. Reaching the

same accuracy without the iterated Aitken accedenabuld require calculating,,.

Tablel
1 2

: (Xn)nDN (X“)nDN ()%)nDN
0 0.00000 -0.51239 -0.56476
1 -0.10000 -0.53054
2 -0.18048 -0.54239
3 -0.24592
4 -0.29953

Error 0.26762 0.02475 0.00238

Table 2 shows the result of the iterative Aitkeonalerator based on 5 values of the serie

n(=1)’
defined byx, = Z%that converges tcg. Reaching the same accuracy without the
i=0 J

iterated Aitken accelerator would require calcul@tk, .

Table 2
2

(o) (B (%)
1.00000 0.79166 0.78552
0.66666 0.78333
0.86666 0.78630
0.72380

0.83492

Error 0.04952 0.00091 0.00001

=)

A WNPFO

b. Meyers’ iterative method

First let us rewrite (13) by replacing,, by f (x,,), and by replacing,, by f (x). It
shows the Aitken formula in another form.

* See [9] for more details on the Lambert W function



gex 4 (1(x)=x) _
= Xu (f()ﬁ)—)ﬁ)—(f()ﬁﬂ)—)ﬁﬂ)(f(xm) Xi+1) (15)

Let us now construct a sequer(og) ..

Yy, is the iteration guess start value, chosen sonestinandomly or with a rough
estimation depending the problem you are tryingdive.

y; is the first iteration and defined for the oridisaquence by, = f (y,). Let's define
8 =1theny, = f(yo)=yo+ f(Yo)=Yo=Yorasf(y9-V9-

Let’s apply (15) toy, and y, to determiney,.

(f(VO)_VO)
Yo =Y.+ Fy)-%
(PEAEAREANE
If we definea, = (f (%) %) and use the fact that, =1 then

(f (VO)_VO)_(f (yl)_yl)
=y, +aay(f(v)-v,)
-yi=ago(f (v,)-vy) (16)
We want to determing, by using (13) toy,, y,and another valug, . An interesting
value fory, is given by
Y, =Ya+a@o(f(y.)-y)
=aa,(f(v.)- V) (17)

The idea is to interpolate or extrapolate in theeation f(y) -y by the same distance
aa, used fory,.

( ) (v2~v2)

Using (13) toy,, y, andy, givesy, =y, + ( ,
Y, - y)

(a3 f(y2> yz) aa,(f(y)-vy))
(2o (f(v) - v))-(ago(f(y)-Y))

Using (16) and (17) giveg, =y, +

Simplifying numerator and denominator bya, gives

- (f(Y1)_Y1) f _
5 y2+(f(yl)—y1)—(f(y2)—y2) aO( (y2) y2)
If we definea, = (Fw) 1) theny, =y, +a,aa.(f(y,)-y,)

(f(yl)_ yl)_( f (yz)_yz)



i-1

Repeating the exact same steps to crgateyy, +(|_0| aij(f (yi ) - yi) and applying (13)

toy,, y andy, gives the Meyers iterative Aitken formulas.

yi+1=yi+(|:|aJ(f(yi)—yi) (18)

With = (f (¥ia) = ¥io)

(f (v =) = (F () -y,

)for 1<i anda, =1.

It is very important to realize here that it has been demonstrated thgy, )

Is convergent, nor that it respects the necessamglitons to be accelerated by

A the Aitken formula. Although in practice the Meydéosmula works really well
in many cases and its convergence is in many caseimpressive, it might be
necessary to verify that it applies to the problatnhand. Nevertheless the
advantage of this method is that it does not regstioring all previous values of
the sequence and it does not require more usediitiction f .

Table 3 compares the results of the normal sequéheaterative Aitken sequence and
the Meyers method, based on 5 values of the sequeefined byf (x) = cos(x)that
converges to approximately 0.73908513. Reachings#me accuracy without Meyers
method, requires computing, with basic iterations ane’ with the iterative Aitken.

Table3

N 2

(X”)nDN (Xn)nDN (yn)nDN
0 0.36235775 0.737279532 0.36235775
1 0.9350636% 0.70250260
2 0.59376721 0.74284646
3 0.8288388¢ 0.73905422
4 0.6757321% 0.73908511

Error 0.0633529¢€ 0.00180561 0.25620330x10’

c. Other iterative ideas that do not work as well

There are several creative ways you can try taateemwith the Aitken accelerator.
Following are some examples of ideas that do nokwenally well in practice.

Reusing the method presented in 6.a by using ({[i&ead of (14). It accelerates the
convergence however in most case the method pesbent 6.a converges faster.

10



Moreover this method requires calling the functgpmuring the iterations, and it will
require n iterations to reach the final value.

Another method is based on using (15) on two pliegedalues of the sequence. This
method works well in practice and has the samerdadgas as the Meyers method, no
storage is required and no additional callsft@re required. However in most cases the

Meyers method converges much faster.

A last method that might sound reasonable at ffitstis flawed is to use (14) on three
preceding values of the sequence. Although thisdegood at first, it does not use the
function g and therefore is not likely to converye the right value. Imagine that two
sequences have the same initial three values,tinghmethod they would end-up having
the same calculated wrong limit.

7. Using Meyers method to solve g(x)=0

Creating a functionf that has for fixed poink = f (Y) the root ofg is relatively easy

if we define f by the following f (x) = x+w(x)g(x), w(x) needs to be picked so that
the sequence converges around

The Meyers formulas (18) applied to following this definition give:

yi+1=yi+(|jaj(vv(yi)g(yi)) (19)

With g = (W(¥2) 9(vi))

(W(¥it) 9(%a)) = (w(¥) a(w))

Most of the timew(x) =1 will be good enough to solvg.

for 1<i anda, =1.

8. Conclusion

A well known result in the domain of data compressis that there is no single
compression algorithm that can compress all datatHer words for a given compression
algorithm there exist some data that can not bepcessed by the algorithm. Delahaye
and Germain-Bonne [5] have shown a very similaulteés the domain of convergence
acceleration by proving that several families afisnces have no algorithm accelerating
the convergence of every sequence of the family.

Therefore, as with the multitude of compressionhuds there are also several other

convergence accelerations methods such as Eulansformation, Wynn's algorithm,
Brezinski's @ algorithm, Levin’s transforms, and extrapolatioathrods.

11



The positive side of this incomplete solution iattthere is always an interest to discover
new acceleration formulas for sequences, and thaereof this tutorial can take part in
this research effort.
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10. Appendix. Non optimized C++ code.

/I Returns an estimate of the limit given three consecutive terms of a sequence
float AitkenExtrapolation( const float x0, const float x1, const float x2 )

float d1 = x1 - x0;

float d2 = x2 - x1;
return xO +d1*d1/(dl-d2);

}

/I Produce another sequence of n-2 terms using the Aitken extrapolation
void IteratedAitken( float* const dst, const float* const src, const long n)

for(longi=0;i<n-2;i++)
dst[ i ] = AitkenExtrapolation( src[i], src[i+ 1], src[i+2]);

}

/I Typedef used for Meyers functions
typedef float (*pSimpleFunction)( float x );
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/I Fixed point iteration using Meyers method. To accelerate Newton method use f=x-u(x)/u'(x)
float MeyersFixedPoint( pSimpleFunction f, const float startPoint, const long maxIteration, const
float epsilon )
{

long iter = maxlteration;

float res = f( startPoint ); // First iteration

float last = res - startPoint;

float prod = 1.0f;

float step = FLT_MAX;

while ( (1 <iter) && ( epsilon <= fabsf( step ) ) ) // One iteration has already been done

float delta = f( res) - res;
float diff = last - delta;
prod *= last / diff;

step = prod * delta;

res += step;

last = delta;

iter--;

}

return res;

}

/I Root finding using Meyers method. To accelerate Newton method use g=u(x)/u'(x)
float MeyersRoot( pSimpleFunction g, const float startPoint, const long maxlIteration, const float
epsilon )
{
long iter = maxlteration;
float last = g( startPoint );
float res = startPoint + last; // First iteration
float prod = 1.0f;
float step = FLT_MAX;

while ( (1 <iter) && ( epsilon <= fabsf( step ) ) ) // One iteration has already been done

float delta = g( res );
float diff = last - delta;
prod *= last / diff;
step = prod * delta;

res += step;
last = delta;
iter--;

}

return res;
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